
Sébastien Mathier

www.excel-pratique.com/en

Arrays are "variables" that allow many values to be stored. We have already covered this topic in Lesson 3, but now we

will go into greater depth ...

Why use arrays? :

Imagine that you are trying to write a procedure in which you will need to store 500 values. If you had to create 500

individual variables to do this, it would be extremely difficult. With an array, storing and working with these values will be

much easier.

A second reason to use arrays is their "speed". It takes much less time to retrieve data from arrays than from "tables"

(made up of cells) on an Excel worksheet ...

So here is an example that will make this all a little clearer ...

On the first worksheet ("DS") you will find a 5000 row by 3 column data set :

On the second worksheet you will find a summary table which accounts for all the "YES" responses by year and by client :

In this case, the procedure will use a loop to process the data set and record the number of "YES" responses for each

year and each client number, then enter this data into the corresponding cells.

Without using arrays, it would take Excel 131.44 seconds to execute this procedure :

But by first storing the data (from worksheet "DS") in an array and then carrying out the same calculations (using the array

instead of the data set from worksheet "DS"), it will only take 1.74 seconds for the procedure to execute :

And if we decided to optimize the procedure by storing only the data containing "YES" responses in the array (which is

about 3/4 of the data), it would take only 1.02 seconds :

This is a good example of how using an array makes it possible to execute a procedure about 128x faster. This

improvement would be even greater if we were working with multiple data sets at once.

Here is another example in which a procedure uses two data sets, effectively the equivalent of a "long loop" executed

78,240,000 times.

Without using arrays, it would take more than 49 minutes for Excel to complete the execution of this immense procedure

:

Simply by using an array for the data set (and without any other modifications), it hardly takes more than 10 seconds to

execute the same procedure :

Declaring an array :

Here are a few examples of array declarations (if the first 2 don't make sense to you, reread Lesson 3) :

'Sample declaration of a 1 dimensional array

Dim array1(4)

'Sample declaration of a 2 dimensional array

Dim array2(6, 1)

'Sample declaration of a dynamic array

Dim array3()

If you can't enter fixed values when you declare an array (because they will depend on the size of the data set, for

example), leave the parentheses empty.

You don't have to declare a type (string, long, etc.), although in many cases this will slow down the execution of your

procedure ...

Storing data in an array :

Let's begin by storing some data in an array :

We want to store 11 x 1 values in this case, so we need to create a 1 dimensional array :

'Declaration

Dim array_example(10)

Don't forget that array element numbering begins with 0 (this is standard in programming, so it's a good idea to get in

the habit of working this way, even though it is actually possible to change this convention in VBA).

Each element in the array will now receive its value :

'Storing values in the array

array_example(0) = Range("A2")

array_example(1) = Range("A3")

array_example(2) = Range("A4")

array_example(3) = Range("A5")

array_example(4) = Range("A6")

array_example(5) = Range("A7")

array_example(6) = Range("A8")

array_example(7) = Range("A9")

array_example(8) = Range("A10")

array_example(9) = Range("A11")

array_example(10) = Range("A12")

You can work with or modify each element of the array as though it were a variable.

Here is an example in which we use array_example(8) :

Sub example()

 'Declaration

 Dim array_example(10)

 'Storing values in the array

 array_example(0) = Range("A2")

 array_example(1) = Range("A3")

 array_example(2) = Range("A4")

 array_example(3) = Range("A5")

 array_example(4) = Range("A6")

 array_example(5) = Range("A7")

 array_example(6) = Range("A8")

 array_example(7) = Range("A9")

 array_example(8) = Range("A10")

 array_example(9) = Range("A11")

 array_example(10) = Range("A12")

 'Test 1

 MsgBox array_example(8) '=> returns : 02.04.2016

 'Changing one of the values

 array_example(8) = Year(array_example(8))

 'Test 2

 MsgBox array_example(8) '=> returns : 2016

End Sub

A For loop would be an effective way to stock the array faster :

'Declaration

Dim array_example(10)

'Storing values in the array

For i = 0 To 10

 array_example(i) = Range("A" & i + 2)

Next

The two dimensional array :

To store more than one column of data, we will need another dimension in our array. Here is an example :

Storing data in a 2 dimensional array :

'Declaration

Dim array_example(10, 2) '11 x 3 "element" array

'Storing values in the array

For i = 0 To 10

 array_example(i, 0) = Range("A" & i + 2)

 array_example(i, 1) = Range("B" & i + 2)

 array_example(i, 2) = Range("C" & i + 2)

Next

And here are a few examples of working with these values :

MsgBox array_example(0, 0) '=> returns : 03.11.2026

MsgBox array_example(0, 1) '=> returns : 24

MsgBox array_example(9, 2) '=> returns : NO

MsgBox array_example(10, 2) '=> returns : YES

The dynamic array :

Just imagine for a moment that this same data set was going to be updated regularly and therefore we couldn't set fixed

values when we declare it ...

To find out the row number of the last cell in a series of non-empty cells, or in other words, the last row in our database,

we'll use the following formula :

last_row = Range("A1").End(xlDown).Row

Excel does not accept variables in declarations.

Instead, declare a dynamic array (using empty parentheses), then define its dimensions using Redim :

Dim array_example()

ReDim array_example(last_row - 2, 2)

Using the following procedure, you can store all the rows in the data set in your array :

Sub example()

 last_row = Range("A1").End(xlDown).Row 'Last row of the data set

 Dim array_example()

 ReDim array_example(last_row - 2, 2)

 'Storing values in the array

 For i = 0 To last_row - 2

 array_example(i, 0) = Range("A" & i + 2)

 array_example(i, 1) = Range("B" & i + 2)

 array_example(i, 2) = Range("C" & i + 2)

 Next

End Sub

Ubound :

In the preceding example, the last number in our array was last_row - 2 :

For i = 0 To last_row - 2

Another way to determine the last number in the array would be to use Ubound :

For i = 0 To UBound(array_example)

This function returns the highest number in the array for the chosen dimension (the first dimension is the default).

Here are a few examples that will make this clearer :

Sub example()

 Dim array_example(10, 2)

 MsgBox UBound(array_example) '=> returns : 10

 MsgBox UBound(array_example, 1) '=> returns : 10

 MsgBox UBound(array_example, 2) '=> returns : 2

End Sub

Storing data in a range of array elements :

It's possible to populate an array with the data from a range of worksheet cells without even using a loop.

'Declaration

Dim array_example(10, 2) '11 x 3 "element" array

'Storing values in the array

For i = 0 To 10

 array_example(i, 0) = Range("A" & i + 2)

 array_example(i, 1) = Range("B" & i + 2)

 array_example(i, 2) = Range("C" & i + 2)

Next

The preceding code can effectively be replaced with :

'Declaration

Dim array_example()

'Storing values in the array

array_example = Range("A2:C12").Value

But if this second method seems attractive at first, be warned that in many cases it can cost you more time than the first

one ...

If you store data in your array in this way, the first number will be 1 rather than 0, which can cause confusion ... Further

along in the development process, if you decide to save only data that correspond to certain search criteria in your array

(or to carry out an entirely different operation), you will have to entirely rewrite the code using another loop function ...

But this second method is quite useful if you need to store the entire contents of a large data set, because it's faster than a

loop (saving about 0.2 seconds for every 15,000 entries).

Array :

But if you need to create an array that has "fixed" contents.

One solution would be to set the contents line by line :

Dim en(5)

en(0) = "IF"

en(1) = "VLOOKUP"

en(2) = "SUM"

en(3) = "COUNT"

en(4) = "ISNUMBER"

en(5) = "MID"

Luckily, you can simplify this code by using Array :

en = Array("IF", "VLOOKUP", "SUM", "COUNT", "ISNUMBER", "MID")

Here is a demonstration of the use of the Replace function (this will help you understand the example that follows) :

Sub replace_example()

 Dim var_translate As String

 'A string for this example

 var_translate = "Hello World !"

 'Replacement of "World" with "you" in the character string

 var_translate = Replace(var_translate, "World", "you")

 'The string after replacement

 MsgBox var_translate '=> returns "Hello you !"

End Sub

Now if we want to replace a series of values with another series, using arrays and the (Array) function will be extremely

helpful :

Sub translate() 'Simplified example of EN-FR translation for formulas

 Dim var_translate As String

 'A string for this example

 var_translate = "Formula to translate : SUM(IF(ISNUMBER(A1:E1),A1:E1,0))"

 'The two series of values

 en = Array("IF", "VLOOKUP", "SUM", "COUNT", "ISNUMBER", "MID")

 fr = Array("SI", "RECHERCHEV", "SOMME", "NB", "ESTNUM", "STXT")

 'Replacing "SI" with "IF", and "RECHERVEV" with "VLOOKUP", etc.

 For i = 0 To UBound(en)

 var_translate = Replace(var_translate, en(i), fr(i))

 Next

 'The string after the replacements

 MsgBox var_translate '=> returns "Formula to translate : SOMME(SI(ESTNUM(A1:E1),A1:E1,0))"

End Sub

Split :

The Split function allows us to convert a character string into an array.

To convert the string into an array, do the following :

variable = "IF/VLOOKUP/SUM/COUNT/ISNUMBER/MID"

Use the Split function and define the separator :

en = Split(variable, "/")

The array en will return the following values :

MsgBox en(0) '=> returns : IF

MsgBox en(1) '=> returns : VLOOKUP

MsgBox en(2) '=> returns : SUM

MsgBox en(3) '=> returns : COUNT

MsgBox en(4) '=> returns : ISNUMBER

MsgBox en(5) '=> returns : MID

The following 3 arrays will also return the same values :

en = Array("IF", "VLOOKUP", "SUM", "COUNT", "ISNUMBER", "MID")

en = Split("IF,VLOOKUP,SUM,COUNT,ISNUMBER,MID", ",")

en = Split("IF VLOOKUP SUM COUNT ISNUMBER MID", " ")

The following example returns the 3 value in the string :

MsgBox Split("IF,VLOOKUP,SUM,COUNT,ISNUMBER,MID", ",")(2) '=> returns : SUM

The opposite of the Split function is Join. This function assembles the values of an array into a string.

MsgBox Join(Array(1, 2, 3, 4, 5), "") '=> returns : 12345

rd

Exercise :

To practice using arrays, you will create your own version of the macro that we used to demonstrate the speed advantages

of arrays, step by step ...

Here is the starting point of this exercise (you will see that the data set has been reduced to 1000 rows) :

Source file : arrays_exercise.xls

Goal of the exercise : the procedure should process the data in the data set using a loop and count the number of "YES"

or "NO" responses for each year and for each client number (either "YES" or "NO", depending on user selection) and enter

this count in a specified cell on the worksheet.

Complete the following macro to store the data set from worksheet "DS" in an array :

Sub actualize()

 Dim last_row As Integer

 'Last row of the data set

 '...

 'Storing the data set in a dynamic array

 Dim array_db()

 '...

End Sub

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Here is one solution :

Sub actualize()

 Dim last_row As Integer

 'Last row of the database

 last_row = Sheets("DS").Range("A1").End(xlDown).Row

 'Storing the data set in a dynamic array

 Dim array_db()

 ReDim array_db(last_row - 2, 2)

 For row_number = 2 To last_row

 array_db(row_number - 2, 0) = Sheets("DS").Range("A" & row_number)

 array_db(row_number - 2, 1) = Sheets("DS").Range("B" & row_number)

 array_db(row_number - 2, 2) = Sheets("DS").Range("C" & row_number)

 Next

End Sub

This essentially repeats what we did on the previous page ...

But now we need to modify the macro by adding the following actions :

Determine the user's choice ("YES" or "NO")

Calculate the number of "YES" or "NO" responses in the data set in order to determin the size of the array (Redim)

Store only the rows of the data set that contain "YES" or "NO" responses in the array (this means that there's no need

to store the data from the 3 column)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rd

.

.

.

Here is one solution :

Sub actualize()

 Dim last_row As Integer, search_value As String, insert_row As Integer, value_yes_no As

String, rows_number As Integer

 'Last row of the data set

 last_row = Sheets("DS").Range("A1").End(xlDown).Row

 'Search value (YES or NO)

 If Sheets("RES").OptionButton_yes.Value = True Then

 search_value = "YES"

 Else

 search_value = "NO"

 End If

 'Number of YES or NO responses

 rows_number = WorksheetFunction.CountIf(Sheets("DS").Range("C2:C" & last_row),

search_value)

 'Storing the data set in the array

 Dim array_db()

 ReDim array_db(rows_number - 1, 1)

 insert_row = 0

 For row_number = 2 To last_row

 value_yes_no = Sheets("DS").Range("C" & row_number)

 If value_yes_no = search_value Then

 array_db(insert_row, 0) = Sheets("DS").Range("A" & row_number)

 array_db(insert_row, 1) = Sheets("DS").Range("B" & row_number)

 insert_row = insert_row + 1

 End If

 Next

End Sub

The user's search choice is determined at the beginning of the procedure by the following code :

'Search value (YES or NO)

If Sheets("RES").OptionButton_yes.Value = True Then

 search_value = "YES"

Else

 search_value = "NO"

End If

We are using the CountIF function to determine the number of YES or NO responses :

'Number of YES or NO responses

rows_number = WorksheetFunction.CountIf(Sheets("DS").Range("C2:C" & last_row), search_value)

The size of the array has been adjusted to fit the number of YES or NO responses and reduced to two columns :

ReDim array_db(rows_number - 1, 1)

The data will now be stored in the array when its 3 column corresponds to the user's search choice :

'Insertion number in the array

insert_row = 0

'Processing the data set

For row_number = 2 To last_row

 'Value of column C (YES or NO)

 value_yes_no = Sheets("DS").Range("C" & row_number)

 'If the value corresponds to the user's search choice, the row is stored in the array

 If value_yes_no = search_value Then

 'Storing the value of column A

 array_db(insert_row, 0) = Sheets("DS").Range("A" & row_number)

 'Storing the value of column B

 array_db(insert_row, 1) = Sheets("DS").Range("B" & row_number)

 'One row has been stored => the insertion number in the array is incremented by 1

 insert_row = insert_row + 1

 End If

Next

The array contains only the data that we are interested in.

All that we have left to do is to :

Process each element of the table on the "RES" worksheet using 2 loops (this is the same idea as the checkerboard

exercise)

And insert the total number of entries on this worksheet for a year by client number for each cell

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rd

.

.

.

Here is a solution :

'Count of "YES"/"NO" responses

For no_years = 2011 To 2026

 For no_client = 1 To 30

 counter = 0

 For i = 0 To UBound(array_db)

 If Year(array_db(i, 0)) = no_years And array_db(i, 1) = no_client Then

 counter = counter + 1

 End If

 Next

 Cells(no_years - 2009, no_client + 1) = counter

 Next

Next

The solution with commentaries that explain it in detail :

'A loop for each row

For no_years = 2011 To 2026

 'A loop for each column

 For no_client = 1 To 30

 'Counter re-initialized

 counter = 0

 'Processing the array

 For i = 0 To UBound(array_db)

 'Verify that the row in the table match the year and client number

 If Year(array_db(i, 0)) = no_years And array_db(i, 1) = no_client Then

 'If year and client number match, the counter is incremented by 1

 counter = counter + 1

 End If

 Next

 'After processing the array, the total is entered in the appropriate cell

 Cells(no_years - 2009, no_client + 1) = counter

 Next

Next

And finally, the code of the entire macro :

Sub actualize()

 Dim last_row As Integer, search_value As String, insert_row As Integer, value_yes_no As

String, rows_number As Integer, counter As Integer

 'Deleting contents

 Range("B2:AE17").ClearContents

 'Last row in the data set

 last_row = Sheets("DS").Range("A1").End(xlDown).Row

 'Search value (YES ou NO)

 If Sheets("RES").OptionButton_yes.Value = True Then

 search_value = "YES"

 Else

 search_value = "NO"

 End If

 'Number of YES or NO responses

 rows_number = WorksheetFunction.CountIf(Sheets("DS").Range("C2:C" & last_row),

search_value)

 'Storing the data set in the array

 Dim array_db()

 ReDim array_db(rows_number - 1, 1)

 insert_row = 0

 For row_number = 2 To last_row

 value_yes_no = Sheets("DS").Range("C" & row_number)

 If value_yes_no = search_value Then

 array_db(insert_row, 0) = Sheets("DS").Range("A" & row_number)

 array_db(insert_row, 1) = Sheets("DS").Range("B" & row_number)

 insert_row = insert_row + 1

 End If

 Next

 'Count of YES or NO responses

 For no_years = 2011 To 2026

 For no_client = 1 To 30

 counter = 0

 For i = 0 To UBound(array_db)

 If Year(array_db(i, 0)) = no_years And array_db(i, 1) = no_client Then

 counter = counter + 1

 End If

 Next

 Cells(no_years - 2009, no_client + 1) = counter

 Next

 Next

End Sub

Source file : arrays_exercise_completed.xls

© Excel-Pratique.com - PRIVATE USE ONLY

